180 research outputs found

    Poly-chlorinated biphenyls (PCB) in European sea bass from different rearing systems

    Get PDF
    The chemical composition and the level of seven indicator congeners of PCB (BZ/IUPAC no. 28, 52, 101, 118, 138, 153, and 180) were determined in 133 specimens of farm-raised European sea bass (Dicentrarchus labrax). The fish were caught from different aquaculture rearing systems: extensive fish valley, semi-intensive ponds, sea-cages, and intensive concrete tanks. Fresh fillet chemical composition differed among the rearing systems (fat: 2.9, 7.5, 7.1, and 9.4%; P<0.001). Total concentrations of indicator congeners were below the EU limit (200ng/g fat) for meat, poultry and eggs, being the lowest in extensively-reared sea bass (75ng/g fat), intermediate in sea bass from semi-intensive ponds (119) and sea cages (116), and the highest in intensively-reared fish (133) (P<0.001). Similarly, PCB concentrations in fresh fillets were 2,438, 10,116, 8,491, and 12,952pg/g in the four systems (P<0.001). The congener 153 was the most represented in all rearing systems. TEQ concentrations for the dioxin-like congener no. 118 were 50 to 200 times lower than the maximum admitted value. Total concentration of indicator congeners of PCB was poorly correlated with fish slaughter weight (R2=0.17), while highly correlated with fat concentration of fish (R2=0.75)

    Design and performance evaluation of a lightweight wireless early warning intrusion detection prototype

    Get PDF
    The proliferation of wireless networks has been remarkable during the last decade. The license-free nature of the ISM band along with the rapid proliferation of the Wi-Fi-enabled devices, especially the smart phones, has substantially increased the demand for broadband wireless access. However, due to their open nature, wireless networks are susceptible to a number of attacks. In this work, we present anomaly-based intrusion detection algorithms for the detection of three types of attacks: (i) attacks performed on the same channel legitimate clients use for communication, (ii) attacks on neighbouring channels, and (iii) severe attacks that completely block network's operation. Our detection algorithms are based on the cumulative sum change-point technique and they execute on a real lightweight prototype based on a limited resource mini-ITX node. The performance evaluation shows that even with limited hardware resources, the prototype can detect attacks with high detection rates and a few false alarms. © 2012 Fragkiadakis et al

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment

    Get PDF
    The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios

    Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks

    Get PDF
    A number of disasters in various places of the planet have caused an extensive loss of lives, severe damages to properties and the environment, as well as a tremendous shock to the survivors. For relief and mitigation operations, emergency responders are immediately dispatched to the disaster areas. Ubiquitous and robust communications during the emergency response operations are of paramount importance. Nevertheless, various reports have highlighted that after many devastating events, the current technologies used, failed to support the mission critical communications, resulting in further loss of lives. Inefficiencies of the current communications used for emergency response include lack of technology inter-operability between different jurisdictions, and high vulnerability due to their centralized infrastructure. In this article, we propose a flexible network architecture that provides a common networking platform for heterogeneous multi-operator networks, for interoperation in case of emergencies. A wireless mesh network is the main part of the proposed architecture and this provides a back-up network in case of emergencies. We first describe the shortcomings and limitations of the current technologies, and then we address issues related to the applications and functionalities a future emergency response network should support. Furthermore, we describe the necessary requirements for a flexible, secure, robust, and QoS-aware emergency response multi-operator architecture, and then we suggest several schemes that can be adopted by our proposed architecture to meet those requirements. In addition, we suggest several methods for the re-tasking of communication means owned by independent individuals to provide support during emergencies. In order to investigate the feasibility of multimedia transmission over a wireless mesh network, we measured the performance of a video streaming application in a real wireless metropolitan multi-radio mesh network, showing that the mesh network can meet the requirements for high quality video transmissions

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389
    corecore